TRANSPORT ATPASES: STRUCTURE, MECHANISM AND RELEVANCE TO MULTIPLE DISEASES

Roles of transmembrane segment M1 of Na^+,K^+ -ATPase and Ca^{2+} -ATPase, the gatekeeper and the pivot

Anja Pernille Einholm • Jens Peter Andersen • Bente Vilsen

Published online: 5 December 2007 © Springer Science + Business Media, LLC 2007

Abstract In this review we summarize mutagenesis work on the structure-function relationship of transmembrane segment M1 in the Na^+, K^+ -ATPase and the sarco(endo)plasmic reticulum Ca²⁺-ATPase. The original hypothesis that charged residues in the N-terminal part of M1 interact with the transported cations can be rejected. On the other hand hydrophobic residues in the middle part of M1 turned out to play crucial roles in Ca²⁺ interaction/occlusion in Ca²⁺-ATPase and K^+ interaction/occlusion in Na^+, K^+ -ATPase. Leu⁶⁵ of the Ca²⁺-ATPase and Leu⁹⁹ of the Na⁺,K⁺-ATPase, located at homologous positions in M1, function as gatelocking residues that restrict the mobility of the side chain of the cation binding/gating residue of transmembrane segment M4, Glu³⁰⁹/Glu³²⁹. A pivot formed between a pair of a glycine and a bulky residue in M1 and M3 seems critical to the opening of the extracytoplasmic gate in both the Ca^{2+} -ATPase and the Na⁺,K⁺-ATPase.

Keywords Na^+, K^+ -ATPase $\cdot Ca^{2+}$ -ATPase \cdot Transmembrane segment M1 \cdot Ion occlusion \cdot Leucine \cdot P-type ATPase \cdot Gating

All numbering of Na⁺,K⁺-ATPase amino acid residues in this article refers to the sequence of the rat α_1 -isoform.

A. P. Einholm · J. P. Andersen · B. Vilsen Institute of Physiology and Biophysics, University of Aarhus, Aarhus, Denmark

B. Vilsen (🖂)

Department of Physiology, Institute of Physiology and Biophysics, University of Aarhus, 1160 Ole Worms Allé, Aarhus C 8000, Denmark e-mail: bv@fi.au.dk

Introduction

The Na⁺,K⁺-ATPase and the sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA) are prominent members of the family of cation transporting P-type ATPases, which in addition include H⁺,K⁺-ATPase, heavy metal transporting ATPases, plasma membrane and secretory pathway Ca²⁺-ATPases, as well as plant and yeast H⁺-ATPases and phospholipid flippases. The distinguishing biochemical feature of P-type ATPases is the formation during their reaction cycle of a covalent acylphosphate enzyme intermediate, resulting from the transfer of the γ -phosphoryl group of ATP to a conserved aspartyl residue within the protein (Pedersen and Carafoli 1987). The structural similarities among P-type ATPases reside within one main chain (denoted α -subunit in Na⁺,K⁺- and H⁺,K⁺-ATPases), although in some of the P-type ATPases, the function and targeting to specific cellular locations depend on interaction of the main chain with accessory subunits, the ß-subunit in case of the Na⁺,K⁺- and H⁺,K⁺-ATPases. All P-type ATPases contain conserved cytoplasmic sequences associated with the catalytic site, including the DKTG-motif with the phosphorylated aspartic acid residue and the TGES motif containing a glutamate required for dephosphorylation (Clausen et al. 2004). The Na⁺, K⁺-ATPase is most closely related to the H^+ , K^+ -ATPase (60% overall amino acid sequence identity) and SERCA (~30% identity and 65% similarity). In fact, the homology between SERCA and the Na⁺,K⁺-ATPase is more pronounced than between SERCA and the plasma membrane Ca²⁺-ATPase (Sweadner and Donnet 2001).

The P-type ATPases seem to operate by a common mechanism involving two major conformations E_1 and E_2 , both of which exist in a phosphorylated and a dephosphorylated state. The reaction sequence $E_1 + 3\text{Na}_{\text{cyt}}^+ \rightarrow \text{Na}_3E_1 \rightarrow$ [Na₃] $E_1\text{P} \rightarrow E_2\text{P} + 3\text{Na}_{\text{ext}}^+ \rightarrow E_2\text{P} + 2\text{K}_{\text{ext}}^+ \rightarrow \text{K}_2E_2\text{P} \rightarrow$ $[K_2]E_2 \rightarrow E_1 + 2K_{cyt}^+$ describes how the transitions between the Na⁺,K⁺-ATPase conformational states lead to ATP hydrolysis coupled with sequential ion translocation across the membrane (Post et al. 1972; Glynn 1993). In E_1 and E_2P , the enzyme binds Na⁺ and K⁺ from the cytoplasmic and extracellular sides of the membrane, respectively. In [Na₃] E_1P and $[K_2]E_2$, the ions are in transit, bound in so-called "occluded" states (indicated by brackets) where they have no access to the medium on either side of the membrane due to closure of the cytoplasmic gate as well as the extracellular gate (Vilsen et al. 1987; Glynn 1993). In the analogous reaction cycle of SERCA, two Ca²⁺ ions are translocated towards the lumen of the sarco(endo)plasmic reticulum in exchange for two to three protons for each ATP being hydrolyzed, with Ca² + and H⁺ being occluded in E_1P and E_2 , respectively.

The Na⁺, K⁺-ATPase α -subunit and the Ca²⁺-ATPase are both made up of 10 transmembrane helices, M1-M10, and a cytoplasmic part consisting of three domains denoted A-(actuator), N- (nucleotide-binding), and P- (phosphorylation) domain (Toyoshima et al. 2000; Hu and Kaplan 2000; Sweadner and Donnet 2001). Residues in the transmembrane segments M4, M5, M6, M8, and possibly M9 (Na⁺, K⁺-ATPase) donate oxygen ligands for binding of the transported cations (Clarke et al. 1989a; Vilsen and Andersen 1992b, 1998; Jewell-Motz and Lingrel 1993; Andersen and Vilsen 1994; Arguello and Kaplan 1994; Vilsen 1995a; Kuntzweiler et al. 1996; Blostein et al. 1997; Pedersen et al. 1998; Toyoshima et al. 2000; Ogawa and Toyoshima 2002). Glu³²⁹ of M4 (Ca²⁺-ATPase Glu³⁰⁹) has been pinpointed as a crucial residue that gates the entrance to the cation binding pocket, both at the cytoplasmic side in the E_1 form and at the extracytoplasmic side in the E_2P form, thus presumably moving in connection with the ion translocating conformational change (Vilsen and Andersen 1998). Structural models based on X-ray crystallography of the various Ca²⁺-ATPase intermediates have indicated that the transport associated conformational changes encompass changes in the relation of the cytoplasmic domains as well as the transmembrane segments, including a shift of M1-M2 helices in the direction perpendicular to the membrane and movement of the cytoplasmic bent part of M1 along the membrane surface (Toyoshima et al. 2000, 2004; Toyoshima and Nomura 2002; Toyoshima and Mizutani 2004; Sorensen et al. 2004; Olesen et al. 2004).

In this review we focus on our mutational studies elucidating the role of transmembrane segment M1 in the transport mechanism (Einholm et al. 2003, 2004, 2005, 2007). Before these studies the only evidence pointing to an important role of M1 was the finding of the mutation Leu⁶⁵Ser in SERCA2b in some patients with Darier disease (Ruiz-Perez et al. 1999), whereas no significant effects on the functional cycles of Ca²⁺-ATPase or Na⁺,K⁺-ATPase had

been revealed by *in vitro* mutagenesis studies of other residues in M1 (Clarke et al. 1989a, b, 1990; MacLennan et al. 1997; Askew and Lingrel 1994; Canessa et al. 1992; Price and Lingrel 1988; Price et al. 1989, 1990; Schultheis and Lingrel 1993). Generally, the sequence homology between the Ca²⁺-ATPase and the Na⁺,K⁺-ATPase is rather low in M1 (Fig. 1), raising the question whether the structural and functional roles played by M1, if any, are similar or distinct.

All in all, we investigated 43 mutants with alteration to residues in M1 of the Ca²⁺-ATPase or the Na⁺,K⁺-ATPase (indicated in Fig. 1). The effects of the mutations on the various partial reactions involved in ion translocation and ATP hydrolysis were analyzed by steady-state and transient kinetic methods.

Rejection of the hypothesized involvement of charged residues of the N-terminal part of M1 in the interaction with transported ions

The presence of four carboxylic acid residues in the Nterminal part of M1 of the Ca2+-ATPase versus two positively charged (Lys⁸⁶ and Arg⁸⁹) and one negatively charged (Glu^{83}) side chains in the same region of the Na⁺,K⁺-ATPase (see Fig. 1) led to the hypothesis that these M1 residues possibly together with one or more negatively charged residues of M2 and/or M3 contribute to a cation selectivity filter similar to that proposed for certain Na⁺ and Ca²⁺ channels, where the ion selectivity depends on the presence of two negatively charged side chains and one positive side chain in the Na⁺ channel and on four negatively charged side chains in the Ca^{2+} channel (Lipkind and Fozzard 2000, 2001). The first crystal structure of the Ca²⁺-ATPase corresponding to Ca_2E_1 (Toyoshima et al. 2000) revealed the presence of a short channel passing between Glu⁵⁵ (M1) and Glu^{109} (M2) on the membrane surface to Glu^{309} , the Ca^{2+1} binding residue of M4. The four carboxylic acid residues of

				R					
		R	R QF	LP					
		L	L AI	AA A	A				
49	LW	ELV	IEQFE	DLLV	RILLL	AACIS	FVLAW	FEE	80
83	EW	VKF	CRQLE	GGFS	MLLWI	GAILO	FLAYG	IRS	114
	A	AA	AAAA	AAAA	AAALA	8			
		EQ	ELP	L	I				
			R	Y	F				
				R	Q				
Fig.	1 5	Sequen	ce align	ments (S	Sweadne	r and Do	nnet 2001) of th	ne M1

Fig. 1 Sequence alignments (Sweadner and Donnet 2001) of the M1 region of Ca^{2+} -ATPase (*upper*) and Na^+,K^+ -ATPase (*lower*). Conserved residues are indicated in red. The various mutations introduced into the Ca^{2+} -ATPase are shown above the replaced residues, whereas those introduced into the Na^+,K^+ -ATPase are shown below

Fig. 2 Side view of transmembrane segments M1, M3, and M4 in various conformational states of the Ca²⁺-ATPase (**a**–**c**) and the Na⁺, K⁺-ATPase (**d**). The cytoplasmic side is above and the luminal/extracellular side is below. **a** The first crystal structure of the Ca²⁺-ATPase in the Ca₂E₁ form (PDB accession code 1SU4). In this structure the M1 helix is straight and Glu⁵⁸ of M1 contacts the Ca²⁺ binding residue Glu³⁰⁹ of M4. The two bound Ca²⁺ ions are shown here and in (**b**) as yellow spheres. **b** Ca₂E₁ form with bound ADP and AlF⁻₄ (PDB accession code 1T5T). In this structure M1 bends and the two Ca²⁺ ions are occluded, i.e. their access to the medium is blocked. The carboxylic acid residues Glu⁵¹, Glu⁵⁵, and Glu⁵⁸ now occupy peripheral positions. **c** E₂ form with bound MgF²₄ and thapsigargin (PDB accession code: 1WPG). **d** Na⁺,K⁺-ATPase model based on the Ca²⁺-ATPase (**b** and **c**) and the pair Gly⁹⁴–Ile²⁸⁷ of the Na⁺,K⁺-ATPase (**d**) form a contact point between M1 and M3 that could function as a

pivot for the movement of M1 during the ion translocation (Einholm et al. 2005). Glu³⁰⁹ (Ca²⁺-ATPase) and Glu³²⁹ (Na⁺,K⁺-ATPase) of M4 gate the entrance to the cation binding pocket, both at the cytoplasmic side in the E_1 form and at the extracytoplasmic side in the E_2P form, thus presumably moving in connection with the ion translocating conformational change (Vilsen and Andersen 1998). The conserved leucine of M1 (Leu⁶⁵ in Ca²⁺-ATPase and Leu⁹⁹ in Na⁺,K⁺-ATPase) functions as a gate-locking residue ("gatekeeper"), restricting the mobility of the side chain of Glu³⁰⁹/Glu³²⁹, thereby being critical to ion occlusion (Einholm et al. 2007). The figures were prepared by use of WebLab Viewer (Molecular Simulations Ltd., Cambridge, England). Carbon atoms of residues in M1, M3, and M4 are *blue*, *green*, and *orange*, respectively. Oxygen atoms are shown in *red* and nitrogen atoms in *light blue*. Residues in **a**–**c** are numbered according to the rat α 1-isoform of the Na⁺,K⁺-ATPase

M1 (Glu⁵¹, Glu⁵⁵, Glu⁵⁸, and Asp⁵⁹) occupy rather strategic positions along this channel (Fig. 2a), which was proposed to constitute the cytoplasmic entry pathway to the Ca²⁺ binding sites (Lee and East 2001), because the carboxylate groups might interact with the Ca²⁺ ions, guiding them to their membranous binding sites. An important role of these four acidic residues in M1 was supported by their conservation in the SERCA family of Ca²⁺-ATPases. Furthermore, the close proximity in the Ca₂E₁ crystal structure of Glu⁵⁸ to Glu³⁰⁹ at the Ca²⁺ binding site, with Glu⁵⁸ likely forming a hydrogen bond to Glu³⁰⁹ (Fig. 2a) indicated that M1 might exert a direct conformational effect upon Ca²⁺ occupancy of the binding sites (Lee and East 2001).

To test the hypothesis about Glu^{51} , Glu^{55} , Glu^{58} , and Asp^{59} of the Ca^{2+} -ATPase as part of a possible Ca^{2+} access pathway and/or ion selectivity filter, we mutated these amino acids individually to the neutral leucine and to the rather bulky and oppositely charged arginine (Einholm et al. 2003, 2004). To test the corresponding hypothesis in the Na⁺,K⁺-ATPase, Glu⁸³ was substituted with the neutral alanine and Lys⁸⁶ and Arg⁸⁹ with alanine and the oppositely charged glutamate (Einholm et al. 2007).

Ca²⁺-ATPase

Neither of the replacements of Glu⁵¹, Glu⁵⁵, and Glu⁵⁸ affected the Ca²⁺ transport rate, the apparent Ca²⁺ affinity, or the rate of Ca²⁺ dissociation from the cytoplasmically facing Ca²⁺ sites of the Ca²⁺-ATPase. In fact, the functional behavior of these mutants was wild type-like in all aspects, thus arguing against any direct contribution of these glutamate side chains to the initial recognition and binding of the Ca^{2+} ions (Einholm et al. 2003, 2004). This is best rationalized in terms of the Ca²⁺-ATPase crystal structures published subsequent to the Ca_2E_1 structure. While the first Ca_2E_1 structure has a straight M1 helix (Fig. 2a), in all later crystal structures of the Ca²⁺-ATPase, the helical structure of M1 is bended at Asp⁵⁹, and the region N-terminal to the bend forms a short amphipathic helix lying at the membrane interface, cf. Fig. 2 (Toyoshima et al. 2000, 2004; Toyoshima and Nomura 2002; Toyoshima and Mizutani 2004; Sorensen et al. 2004; Olesen et al. 2004; Jensen et al. 2006; Moncoq et al. 2007; Takahashi et al. 2007). Consequently, Glu⁵¹, Glu⁵⁵, and Glu⁵⁸, which make up the hydrophilic surface of this amphipathic helix, all occupy peripheral positions with respect to the suggested cytoplasmic Ca²⁺ entrance, and this could explain their lack of importance in relation to Ca²⁺ interaction. The first published Ca_2E_1 crystal structure, which shows a straight M1 helix (Toyoshima et al. 2000), might actually not be a representative model of the structure of the enzyme in its native state. Because the Ca_2E_1 crystal structure does not contain bound nucleotide, the cytoplasmic domains are in an open configuration, which may affect the structure of M1 indirectly through the linker between the A-domain and M1. Fe²⁺-catalyzed cleavage studies of the native noncrystalline state of the Ca²⁺-ATPase have shown that the Nand P-domains approach one another in Ca_2E_1 , at least temporarily (Montigny et al. 2004), and electron microscopic analysis of two-dimensional crystals of Ca_2E_1 have unveiled a less open arrangement of the cytoplasmic domains (Ogawa et al. 1998) as compared with the Ca_2E_1 structure obtained by X-ray diffraction of three-dimensional crystals (Toyoshima et al. 2000), indicating that the conformation seen in the latter crystal structure is just one out of many possible ones of the Ca_2E_1 form. This provides a compelling example of the caution needed when interpreting crystal structures that generate static pictures of selected conformations and do not provide insight into the dynamic behavior of the protein in its native environment.

In the atomic model of Ca_2E_1 with the straight M1 helix, the side chains of Glu⁵⁸ in M1 and the Ca²⁺-binding glutamate, Glu³⁰⁹, in M4 are within hydrogen-bond distance (2.44 Å) (Fig. 2a). The only way such a close apposition can be permitted is by formation of a hydrogen bond between these two glutamates, implying that one of these residues is protonated. The lack of effect of the Glu⁵⁸Arg mutation (Einholm et al. 2003, 2004) questions the existence of the Glu⁵⁸–Glu³⁰⁹ interaction, since the introduction of the longer and positively charged arginine at the position corresponding to Glu⁵⁸ would be expected to result in steric collision with Glu³⁰⁹ and repulsion of the Ca²⁺ ions. The discrepancy of the functional data with the position of Glu^{58} in the $\text{Ca}_2 E_1$ crystal structure could be explained either by a high degree of thermal mobility of the Glu⁵⁸ side chain or by structural differences between the crystalline Ca_2E_1 form and the native non-crystalline Ca_2E_1 conformation in this region as outlined above. Whatever is the explanation, the hydrogen bond, if transiently formed, is obviously not of importance for the structural integrity of the Ca²⁺ binding sites in the native non-crystalline state. This conclusion is further substantiated by the lack of effect of the leucine substitution (Einholm et al. 2004). It should be mentioned that in two recent studies examining the ionization states of the Ca²⁺coordinating residues and that of Glu⁵⁸ by continuum electrostatic calculations, it was concluded that Glu⁵⁸ is protonated at neutral pH in the Ca_2E_1 form, but not in the E_2 form of the enzyme (Obara et al. 2005; Sugita et al. 2005). In the latter of these studies, the protonation of Glu⁵⁸ was claimed to be of structural importance, stabilizing the Ca²⁺ sites by reducing the electrostatic repulsions between Glu⁵⁸ and Glu³⁰⁹ in the Ca²⁺ bound form of the Ca²⁺-ATPase (Sugita et al. 2005). In the light of the mutagenesis results (Einholm et al. 2003, 2004), it would clearly have been more relevant to perform the continuum electrostatic calculation

for an Ca_2E_1 form with a bent M1 helix, using as basis one of the Ca_2E_1 structures with bound nucleotide.

By contrast to the mutations of Glu⁵¹, Glu⁵⁵, and Glu⁵⁸, arginine and leucine mutations of Asp⁵⁹ markedly affected the Ca^{2+} binding properties of the Ca^{2+} -ATPase (Einholm et al. 2003, 2004). However, whereas mutants Asp⁵⁹Arg and Asp⁵⁹Leu both displayed a conspicuous 10-fold acceleration of the rate of Ca²⁺ dissociation from the Ca_2E_1 form toward the cytoplasmic side, Asp⁵⁹Ala did not affect the rate constant for Ca^{2+} dissociation. Accordingly, the apparent affinity for Ca²⁺ activation of phosphorylation was reduced in Asp⁵⁹Arg and wild type-like in Asp⁵⁹Ala. The fact that substitution of Asp⁵⁹ with the neutral alanine left the Ca²⁺ binding properties of the Ca²⁺-ATPase unaffected suggests that a relatively small residue is required at this position and seems to exclude a role of the negative charge on the Asp⁵⁹ side chain in interaction with the Ca²⁺ ions. Hence, in this respect Asp⁵⁹ is not different from Glu⁵¹, Glu⁵⁵, and Glu⁵⁸.

Na⁺,K⁺-ATPase

In analogy with the Ca²⁺-ATPase, we speculated that the negatively charged Glu⁸³ and the positively charged Lys⁸⁶ and Arg⁸⁹ in M1 of the Na⁺,K⁺-ATPase are located in close relation to the cytoplasmic inlet for Na⁺, where they might contribute to a Na⁺ selectivity filter. The mutagenesis results on the Na⁺,K⁺-ATPase (Einholm et al. 2007) strongly argue against any importance of the side chains of Lys⁸⁶ and Arg⁸⁹ for Na⁺ migration, by demonstrating that individual substitutions of these residues with the smaller alanine and the oppositely charged glutamate are fully tolerated with no or only an insignificant effect on the apparent affinity for Na⁺. Neither did these mutations affect the apparent affinity for K⁺. Furthermore, the negatively charged Glu⁸³ appeared to be without much importance for Na⁺ and K⁺ affinity, indicating that this residue is not part of a binding site along the cation migration pathway. Not only were the cation binding properties found unaffected by the mutations of these charged residues, but so were also the rate of the overall reaction and the conformational changes of the enzyme. Considering that Glu⁸³, Lys⁸⁶, and the positive charge at position 89 (either an arginine or a lysine) are highly conserved among Na⁺,K⁺-ATPases and H⁺,K⁺-ATPases, and that Glu⁵¹, Glu⁵⁵, and Glu⁵⁸ are all fully conserved among all SERCAs, the apparent lack of functional importance of these residues is surprising. It is possible that it is not the individual side chains, but their joint effect on polarity, that is critical. The charged/polar and hydrophobic residues tend to be distributed on opposite sides of the N-terminal part of M1 helix, making it amphipathic and in this way dictating the orientation of the bend with respect to the water-lipid interface.

Importance of hydrophobic residues in the middle part of M1, Leu⁶⁵/Leu⁹⁹ is the gatekeeper

The second crystal structure of the Ca²⁺-ATPase, the Ca²⁺free E_2 form with thapsigargin bound (Toyoshima and Nomura 2002), drew attention to a water-accessible channel leading between M1 and M3 to Glu³⁰⁹ at the Ca²⁺ site, which has opened by partial unfolding and bending of the helical structure of M1 at Asp⁵⁹. This access pathway, having the potential of a Ca²⁺ entrance, is lined on one side by hydrophobic side chains from the middle part of M1 (Leu⁶⁰, Leu⁶¹, Val⁶², and Leu⁶⁵), which encouraged us to design additional mutations in the middle part of M1 of the Ca²⁺-ATPase (Einholm et al. 2004) and the Na⁺,K⁺-ATPase (Einholm et al. 2007) to investigate the demands for hydrophobicity and bulkiness of residues in the wall lining this channel.

Some of the hydrophobic residues turned out to be much more critical than the charged residues described above. Hence, Leu⁶⁰ and Val⁶² of the Ca²⁺-ATPase were found important for Ca²⁺ interaction, as evidenced by significantly reduced apparent affinities for Ca²⁺ activation of phosphorylation and increased rate constants for the Ca²⁺ dissociation from Ca_2E_1 in mutants with alteration to these residues (Einholm et al. 2004). One possibility for interpretation of these data is that the mutation increased the dimensions of the channel between M1 and M3 through destabilization of the wall, resulting in an easier passage of Ca²⁺. The channel between M1 and M3 is obvious in all the E_2 crystal structures of the Ca²⁺-ATPase, and in the E_2 crystal structures with the inhibitors 2,5-di-tert-butyl-1,4dihydroxybenzene (BHQ) and cyclopiazonic acid (CPA). These inhibitors are bound right in the cytoplasmic mouth of the channel, interacting with Asp⁵⁹, Leu⁶¹, Val⁶², and Leu⁶⁵ and probably blocking Ca²⁺ entry (Obara et al. 2005; Moncoq et al. 2007; Takahashi et al. 2007).

Of the M1 residues substituted in the Ca²⁺-ATPase, Leu⁶⁵. which is located at the bottom of the above discussed channel, is most important to Ca²⁺ occlusion. The occlusion gate seems more stably closed following reduction of the size of the hydrophobic side chain of Leu⁶⁵, as substitution of Leu⁶⁵ with alanine led to a dramatic 11-fold decrease in the rate of Ca^{2+} dissociation from the unphosphorylated E_1 form. Furthermore, the $E_1 P \rightarrow E_2 P$ step was found 4-fold faster in this mutant relative to the wild type, and the dephosphorylation of E_2P was blocked. The fact that this single mutation reduces the rate of Ca^{2+} dissociation from E_1 as much as 11-fold provides a nice illustration of the concept that even the unphosphorylated E_1 enzyme exists in an equilibrium between occluded ($[Ca_2]E_1$) and non-occluded (Ca_2E_1) states (Forbush 1988; Orlowski and Champeil 1991; Vilsen and Andersen 1992a). By stabilizing the occluded state, phosphorylation of the enzyme serves "to lock a door

that has already been closed" (Vilsen 1995b), and apparently the Leu⁶⁵Ala mutation has a similar effect favoring the closed state. The importance of M1 for Ca²⁺ occlusion gained further support when the atomic structure of the Ca^{2+} -ATPase in the occluded conformation was subsequently determined (Toyoshima and Mizutani 2004; Sorensen et al. 2004). In this structure, Leu⁶⁵ is close enough to Glu³⁰⁹ of M4 to make van der Waals contact (cf. Fig. 2b), and Leu⁶⁵ may function as "gate-locking" residue, which by interaction with the side chain of the gating residue Glu³⁰⁹ at the Ca²⁺ site restricts the mobility of the gate (Einholm et al. 2007). It can be envisaged that reduction of the size of the side chain in the Leu⁶⁵Ala mutant will lead to a collapse of the migration pathway, and that under these conditions the position of Glu³⁰⁹ remains even more fixed, thereby explaining the stabilization of the occluded form.

Considering the importance of Leu⁶⁵ of the Ca²⁺-ATPase for Ca²⁺ occlusion it was very stimulating to look at the alignment in Fig. 1, according to which this leucine is conserved between the Ca2+-ATPase and the Na+,K+-ATPase, the corresponding residue being Leu⁹⁹ of the Na⁺,K⁺-ATPase (cf. also Fig. 2d). In fact, this leucine seems to be conserved among all members of the Ca²⁺-ATPase, the Na^+, K^+ -ATPase, and the non-gastric H^+, K^+ -ATPase families, underscoring its vital importance. In the gastric H⁺,K⁺-ATPases, the equivalent residue is a methionine, which is also hydrophobic and somewhat similar to leucine in size. Importantly, mutation of Leu⁹⁹ of the Na⁺, K⁺-ATPase was found to affect K⁺ interaction profoundly (Einholm et al. 2007). Four mutants were studied, Leu⁹⁹Ala, Leu⁹⁹Phe, Leu⁹⁹Gln, and Leu⁹⁹Ile, and three different kinds of effects were observed: (1) acceleration of K^+ deocclusion $[K_2]E_2 \rightarrow E_1$ combined with destabilization of $[K_2]E_2$. This was seen particularly in Leu⁹⁹Phe, but also to some extent in Leu⁹⁹Ala. (2) acceleration of K⁺ deocclusion $[K_2]E_2 \rightarrow E_1$ combined with normal or even increased stability of $[K_2]E_2$. This was seen only for Leu⁹⁹Gln; (3) reduction of the K^+ affinity of the extracellularly facing sites on E_2P , this was seen particularly in Leu⁹⁹Ala and to some extent in Leu⁹⁹Ile, but not in Leu⁹⁹Phe and Leu⁹⁹Gln. In all the three mutants Leu⁹⁹Ala, Leu⁹⁹Phe, and Leu⁹⁹Gln, the rate of K⁺ deocclusion was significantly enhanced, but in contrast to Leu⁹⁹Ala and Leu⁹⁹Phe the equilibrium level of $[K_2]E_2$ was not reduced in Leu⁹⁹Gln, indicating an enhanced rate of formation of $[K_2]E_2$. Among these three mutants, the acceleration of K⁺ deocclusion was most prominent for Leu99Phe, and even when Rb^+ was used as congener of K^+ to stabilize the occluded form as much as possible, the rate of Rb⁺ deocclusion was increased by as much as 39-fold relative to wild type, i.e. more than seen for mutation of the K^+ binding residue Glu³²⁹ (Fig. 3). These findings are consistent with the hypothesis that Leu⁹⁹ and Glu³²⁹

interact and cooperate in K⁺ binding and gating of the K⁺ sites as modeled in Fig. 2d. As a consequence of the close apposition between the side chains of Leu⁹⁹ in M1 and Glu³²⁹ in M4, the replacement of Leu⁹⁹ with the larger phenylalanine leads to steric clash with Glu³²⁹, thus explaining the marked destabilization of the $[K_2]E_2$ form in Leu⁹⁹Phe (Einholm et al. 2007). The insertion of an alanine does not lead to steric collision with Glu³²⁹ and is therefore less destabilizing to $[K_2]E_2$, however, the fact that the Leu⁹⁹Ala mutant showed a significant 5-fold increase in the deocclusion rate (i.e. more than seen for the Leu⁹⁹Ile mutant), indicates that the presence of a side chain of a certain size is necessary in order to restrict the movement of the Glu³²⁹ side chain as required for proper K⁺ occlusion.

The cells expressing Leu⁹⁹Ala required additional K⁺ in the medium to survive, and direct measurements of K⁺ activation of dephosphorylation using a rapid-mixing technique showed a most conspicuous 17-fold reduction in the affinity of E_2P for K⁺ in Leu⁹⁹Ala, whereas Leu⁹⁹Phe and Leu⁹⁹Gln were wild type-like in this respect (cf. Fig. 4). The reduced V_{max} of the dephosphorylation reaction $K_2E_2P \rightarrow [K_2]E_2$ in Leu⁹⁹Phe (see table in Fig. 4) may be explained by a destabilization of the transition state similar to that seen for $[K_2]E_2$. It is noteworthy that the smaller alanine was most disturbing to the K^+ affinity of the E_2P form. The differential effects of the alanine and phenylalanine substitutions on K_2E_2P and $[K_2]E_2$ illustrate very well that these forms are structurally different in line with the assumption that in the $[K_2]E_2$ form K^+ is occluded with no access to either side of the membrane, whereas in K_2E_2P the K⁺ binding site has opened up toward the extracellular surface. In the latter conformation there may be more space available around Leu⁹⁹, which may prevent steric clash between the phenylalanine and the glutamate, thus explaining the close to normal K^+ affinity of E_2P in Leu⁹⁹Phe. An explanation of the low K^+ affinity of E_2P in Leu⁹⁹Ala could be that bulkiness required to hold the ion binding pocket open for K⁺ access from the extracellular side is lacking in this mutant (Einholm et al. 2007).

It is furthermore of note that $\text{Leu}^{99}\text{Gln}$ was found incapable of keeping K⁺ efficiently occluded, even though this mutant retained the ability to bind K⁺ with a wild typelike affinity. Because both occlusion and deocclusion appeared to be accelerated in $\text{Leu}^{99}\text{Gln}$, it seems that the ability to keep the occlusion gate shut has been lost due to disruption of the gate-locking mechanism. In the terminology of the "flickering gate model" proposed by Forbush (Forbush 1987, 1988), this corresponds to a more frequent flickering of the gate, which might be explained by more freedom of movement of the Glu^{329} side chain (see Fig. 10 in Einholm et al. 2007, for structural details explaining that a glutamine at position 99 restricts the mobility of Glu^{329} side chain less than the leucine). The increased rate of release of

Fig. 3 The potassium/rubidium occluded E_2 form of the Na⁺,K⁺-ATPase is severely destabilized by replacement of Leu⁹⁹ with phenylalanine. To study the occlusion and deocclusion of Rb⁺ as a K⁺ congener, the enzyme was equilibrated with Rb⁺ in the absence of Na⁺ and ATP, and the time course of phosphoenzyme formation was subsequently monitored upon dilution of the enzyme in a solution containing [γ -³²P]ATP and Na⁺ required for phosphorylation (Einholm et al. 2007). For the Rb⁺-occluded enzyme, phosphorylation proceeds through the deocclusion of Rb⁺ (step 1 in the scheme), the binding of Na⁺ to the E_1 form (step 2) and the reaction with ATP (step 3), where step 1 is rate limiting. It is seen that in particular the Leu⁹⁹Phe mutant

occluded K⁺ from $[K_2]E_2$ does not allow a distinction between whether it is the cytoplasmic gate or the extracellular gate that is affected. It could be both. Relative to E_1 , Glu^{329} moves closer to the extracellular surface in E_2/E_2P (Vilsen and Andersen 1998) and could form an extracellular gate in these states. Mutation Leu⁹⁹Gln furthermore affected the ability of the Na⁺,K⁺-ATPase to distinguish between Na⁺ and K⁺ at the extracellularly facing binding sites of E_2P , as indicated by an improved ability of Na⁺ to act as surrogate for K⁺ in activation of dephosphorylation, thus resulting in extraordinary Na⁺-ATPase activity (Einholm et al. 2007). Apparently, a hydrophobic residue at the position of Leu⁹⁹ prevents Na⁺, but not K⁺, from being an efficient activator of E_2P dephosphorylation, whereas the glutamine promotes Na⁺ activation of the E_2P dephosphorylation.

When the conspicuous effects of the Leu⁹⁹ mutations on K^+ occlusion and K^+ affinity of the extracellularly facing sites are compared with our observations with the Ca²⁺-ATPase, it should be borne in mind that a role for proton binding in activation of dephosphorylation of Ca²⁺-ATPase

deviates from the wild type in two aspects. First, the intercept with the ordinate is higher in the mutant, reflecting that a higher fraction of enzyme binds Na⁺ instantaneously, because it does not contain occluded Rb⁺. Hence, the equilibrium level of Rb⁺-occluded enzyme is decreased in the mutant (to 73 versus 99% in wild type, see the table). Secondly, the rate constant for deocclusion of Rb⁺ is much higher in the mutant compared with wild type, as indicated by the slope of the line, corresponding to a 39-fold increase in the rate constant for the Leu⁹⁹Phe mutant, relative to the wild type (see the table). The destabilization of the Rb⁺-occluded E_2 form in Leu⁹⁹Phe is even more pronounced than seen for mutation of the cation binding Glu³²⁹ in M4

analogous to that for K⁺ in connection with Na⁺,K⁺-ATPase dephosphorylation is difficult to demonstrate directly, because pH changes exert multiple functional effects. The Na⁺,K⁺-ATPase is therefore an advantageous experimental system compared with the Ca²⁺-ATPase for characterization of the interaction with counterions. Nevertheless, the block of E_2P dephosphorylation observed in the Ca²⁺-ATPase mutant Leu⁶⁵Ala is strongly reminiscent of the markedly reduced affinity of the extracellularly facing sites of E_2P for K⁺ in the Na⁺,K⁺-ATPase mutant Leu⁹⁹Ala, thus suggesting that also in the Ca^{2+} -ATPase the leucine is important for the interaction with the extracytoplasmic counterions. Another similarity between the Ca²⁺-ATPase mutant Leu⁶⁵Ala and the Na⁺,K⁺-ATPase mutant Leu⁹⁹Ala is the acceleration of the $E_1 P \rightarrow E_2 P$ conformational transition, which is intimately associated with Na⁺/Ca²⁺ translocation across the membrane. It seems likely that this acceleration arises from an increased rate of deocclusion of the Na⁺/Ca²⁺ ions bound in E_1 P, which may be accounted for by a relief of the conformational constraint on the Glu³²⁹ side chain caused

Fig. 4 The apparent affinity of the E_2P form of the Na⁺,K⁺-ATPase for extracellular K⁺ is severely reduced by replacement of Leu⁹⁹ with alanine. To study the K⁺ dependence of dephosphorylation of E_2P (step 6 in the scheme of Fig. 3), the latter intermediate was formed by phosphorylation with $[\gamma^{-3^2}P]$ ATP in the presence of Na⁺, and dephosphorylation was followed upon addition of an excess of unlabeled ATP and various concentrations of K⁺ (Einholm et al. 2007). **a** The time course of dephosphorylation of E_2P in the presence of 1 mM K⁺. **b** K⁺ dependence of rate constants determined as in (**a**). The affinity for extracellular K⁺ is severely reduced in the Leu⁹⁹Ala

by the Leu⁶⁵/Leu⁹⁹ side chain, i.e. the presence of an alanine would allow the extracytoplasmic occlusion gate to flicker open more often during the transit from E_1P to E_2P . While these similarities between the functions of the leucine in the Ca²⁺-ATPase and the Na⁺,K⁺-ATPase point to similar roles of M1 in the two enzymes, an important difference also appeared from our results. Hence, in the Ca²⁺-ATPase the interaction of the E_1 form with Ca²⁺ was clearly defective in Leu⁶⁵Ala as evidenced by the 11-fold reduction in the rate of Ca²⁺ dissociation from E_1 discussed above, whereas we obtained no evidence for a change in Na⁺ interaction of the E_1 form of the Na⁺,K⁺-ATPase.

A pivot for movement of M1

The M1 segment of the Na⁺,K⁺-ATPase contains two juxtaposed glycines, Gly⁹³ and Gly⁹⁴, located at the positions corresponding to Asp⁵⁹ and Leu⁶⁰ of the Ca²⁺-ATPase (Fig. 1), i.e. right at the point, where M1 bends (Fig. 2d). In studies of the Gly⁹³Ala and Gly⁹⁴Ala mutants, evidence was provided for a critical role of Gly⁹⁴ in the

mutant corresponding to as much as 17-fold, which is even more than seen for mutation of the cation binding Glu^{329} in M4. The Leu⁹⁹Phe mutation did not reduce the K⁺ affinity of E_2P , but reduced the V_{max} of the E_2P dephosphorylation reaction, probably due to destabilization of the transition state of the reaction, where the ions likely have become occluded. The reduced affinity in the alanine mutant indicates that a side chain of a certain size is required for receiving the K⁺ ions when they bind from the extracellular side (step 5 in Fig. 3) just as Glu³²⁹ in M4 is required for this binding process

interaction with Na⁺ and K⁺ (Einholm et al. 2005). First of all, rapid kinetic measurements of the K⁺ dependence of E_2P dephosphorylation revealed a remarkable 9-fold reduction of the K⁺ affinity of the extracellularly facing sites of E_2P in mutant Gly⁹⁴Ala. Secondly, the sensitivity of the $E_1 P \leftrightarrow E_2 P$ equilibrium to Na⁺ was found considerably reduced, with accumulation of E_2P even at a high Na⁺ concentration of 600 mM where the equilibrium is shifted toward E_1 P in the wild type. This finding indicates that the interaction of E_2 P with extracellular Na⁺ is impaired. Moreover, the ability of Na^+ to induce E_2P dephosphorylation, by acting as a substitute for K⁺, was reduced in Gly⁹⁴Ala. Considering the low affinity of E_2P for K⁺ in this mutant, the mutational effect on the interaction of E_2P with extracellular Na⁺ presumably results from a disruption of the extracellularly facing cation binding sites of E_2P . These effects resemble those observed for mutation Leu⁹⁹Ala, but in addition Gly94Ala displayed a 3-fold reduced apparent affinity for Na⁺ activation of phosphorylation. This was shown to be an effect on the Na⁺ binding E_1 form and not due to a shift of the conformational equilibrium of the dephosphoenzyme away from E_1 . Compared to Gly⁹⁴Ala,

Gly⁹³Ala was much more wild type-like with the K⁺ affinity of E_2 P being slightly increased rather than decreased (Einholm et al. 2005).

In the Ca^{2+} -ATPase crystal structures Ca_2E_1PADP and E_2 MgF₄ (Fig. 2b and c), Leu⁶⁰ in M1 and Gly²⁵⁷ in M3 are in rather close proximity. Metal-catalyzed oxidative cleavage studies of the Na⁺,K⁺-ATPase (Tal et al. 2001) furthermore seem to support the existence of a contact point between M1 and M3 in the native non-crystalline enzyme. In the Na⁺,K⁺-ATPase, the residues present at the positions equivalent to Leu⁶⁰ and Gly²⁵⁷ of the Ca²⁺-ATPase are Gly^{94} and Ile^{287} , respectively (Fig. 2d). The pair of a bulky residue and a small glycine is conserved in as well the SERCA family of ATPases as in all Na⁺,K⁺-ATPase isoforms across species, probably to avoid a steric clash. Hence, the bulkiness of the isoleucine/leucine probably demands that only a small glycine is present at position 94 of M1 in the Na⁺,K⁺-ATPase and at position 257 of M3 in the Ca^{2+} -ATPase (see Fig. 2). The introduction of the larger alanine in Na⁺,K⁺-ATPase mutant Gly⁹⁴Ala likely results in a clash with Ile²⁸⁷ that hinders the movements of M1 and/or alters the positioning of M1. This would be expected to have a direct impact on cation binding, because Leu⁹⁹ immediately below the bending point of M1 makes van der Waals contact with the cation binding glutamate in M4 as discussed above (Fig. 2d, and Einholm et al. 2007). The fact that the Gly⁹⁴Ala mutation caused a 9-fold reduction of the affinity of the E_2P form for K^+ , but a less conspicuous 3-fold reduction of the affinity of the E_1 form for Na⁺ might be explained by the particularly short distance between the residues constituting the contact point in the E_2 structures. Thus, the Gly⁹⁴-Ile²⁸⁷ pair could function as a pivot, i.e. a contact point enabling the movements of M1 required for opening of the external access pathway in E_2P , in that way being critical to the accessibility of extracellular K⁺ ions to their membranous binding sites. The data obtained with the Ca^{2+} -ATPase mutants Asp⁵⁹Arg/Leu and Leu⁶⁰Ala/Pro, showing effects on Ca^{2+} interaction in E_1 as well as on the rate of dephosphorylation of E_2P and an enhanced rate of $E_1P \rightarrow$ E_2 P in Asp⁵⁹Leu (Einholm et al. 2004), may be interpreted analogously in terms of a role for these two residues right at the bending point of M1 in control of the movements of M1 important for interaction with Ca²⁺ and countertransported protons, Leu⁶⁰ forming a pivot together with Gly²⁵⁷ of M3 as suggested above.

Conclusion

In conclusion, the picture that emerges is that the hydrophobic, middle part of transmembrane segment M1 plays a similar crucial role in Ca^{2+} interaction/occlusion in Ca^{2+} . ATPase and K⁺ interaction/occlusion in Na⁺,K⁺-ATPase, and likely participates in the formation of a pivot for movement of M1 in relation to the cation translocation. Thus, despite the poor sequence conservation in this region, the exception being the gatekeeper Leu⁶⁵/Leu⁹⁹, a similar concept of movements of M1 in relation to the cation translocating steps applies to the Ca²⁺-ATPase and the Na⁺,K⁺-ATPase and, possibly, to the whole family of P-type ATPases.

Acknowledgment Studies performed in the laboratory of Bente Vilsen were supported by grants from the Faculty of Health Sciences, University of Aarhus, the Danish Medical Research Council, the Lundbeck Foundation, Denmark, and the Novo Nordisk Foundation, Denmark.

References

- Andersen JP, Vilsen B (1994) J Biol Chem 269:15931-15936
- Arguello JM, Kaplan JH (1994) J Biol Chem 269:6892-6899
- Askew GR, Lingrel JB (1994) J Biol Chem 269:24120-24126
- Blostein R, Wilczynska A, Karlish SJ, Arguello JM, Lingrel JB (1997) J Biol Chem 272:24987–24993
- Canessa CM, Horisberger JD, Louvard D, Rossier BC (1992) EMBO J 11:1681–1687
- Clarke DM, Loo TW, Inesi G, MacLennan DH (1989a) Nature 339: 476–478
- Clarke DM, Maruyama K, Loo TW, Leberer E, Inesi G, MacLennan DH (1989b) J Biol Chem 264:11246–11251
- Clarke DM, Loo TW, MacLennan DH (1990) J Biol Chem 265:6262-6267
- Clausen JD, Vilsen B, McIntosh DB, Einholm AP, Andersen JP (2004) Proc Natl Acad Sci U S A 101:2776–2781
- Einholm AP, Vilsen B, Andersen JP (2003) Ana N Y Acad Sci 986: 310–311
- Einholm AP, Vilsen B, Andersen JP (2004) J Biol Chem 279:15888-15896
- Einholm AP, Toustrup-Jensen M, Andersen JP, Vilsen B (2005) Proc Natl Acad Sci U S A 102:11254–11259
- Einholm AP, Andersen JP, Vilsen B (2007) J Biol Chem 282:23854-23866
- Forbush B III (1987) J Biol Chem 262:11116–11127
- Forbush B III (1988) Prog Clin Biol Res 268A:229–248
- Glynn IM (1993) J Physiol 462:1–30
- Hu YK, Kaplan JH (2000) J Biol Chem 275:19185-19191
- Jensen AM, Sorensen TL, Olesen C, Moller JV, Nissen P (2006) EMBO J 25:2305-2314
- Jewell-Motz EA, Lingrel JB (1993) Biochemistry 32:13523-13530
- Kuntzweiler TA, Arguello JM, Lingrel JB (1996) J Biol Chem 271:29682–29687
- Lee AG, East JM (2001) Biochem J 356:665-683
- Lipkind GM, Fozzard HA (2000) Biochemistry 39:8161-8170
- Lipkind GM, Fozzard HA (2001) Biochemistry 40:6786-6794
- MacLennan DH, Rice WJ, Green NM (1997) J Biol Chem 272: 28815–28818
- Moncoq K, Trieber CA, Young, HS (2007) J Biol Chem 282:9748-9757
- Montigny C, Jaxel C, Shainskaya A, Vinh J, Labas V, Moller JV, Karlish SJ, le Maire M (2004) J Biol Chem 279:43971–43981
- Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C (2005) Proc Natl Acad Sci U S A 102:14489–14496
- Ogawa H, Toyoshima C (2002) Proc Natl Acad Sci U S A 99:15977-15982
- Ogawa H, Stokes DL, Sasabe H, Toyoshima C (1998) Biophys J 75: 41–52
- Olesen C, Sorensen TL, Nielsen RC, Moller JV, Nissen P (2004) Science 306:2251–2255
- Orlowski S, Champeil P (1991) Biochemistry 30:352-361

- Pedersen PL, Carafoli E (1987) Trends Biochemic Sci 12:146–150
- Pedersen PA, Nielsen JM, Rasmussen JH, Jorgensen PL (1998) Biochemistry 37:17818-17827
- Post RL, Hegyvary C, Kume S (1972) J Biol Chem 247:6530–6540 Price EM, Lingrel JB (1988) Biochemistry 27:8400–8408
- Price EM, Rice DA, Lingrel JB (1989) J Biol Chem 264:21902–21906
- Price EM, Rice DA, Lingrel JB (1990) J Biol Chem 265:6638–6641
- Ruiz-Perez VL, Carter SA, Healy E, Todd C, Rees JL, Steijlen PM,
- Carmichael AJ, Lewis HM, Hohl D, Itin P, Vahlquist A, Gobello T, Mazzanti C, Reggazini R, Nagy G, Munro CS, Strachan T (1999) Hum Mol Genet 8:1621–1630
- Schultheis PJ, Lingrel JB (1993) Biochemistry 32:544-550
- Sorensen TL, Moller JV, Nissen P (2004) Science 304:1672-1675
- Sugita Y, Miyashita N, Ikeguchi M, Kidera A, Toyoshima C (2005) J Am Chem Soc 127:6150–6151
- Sweadner KJ, Donnet C (2001) Biochem J 356:685-704

- Takahashi M, Kondou Y, Toyoshima C (2007) Proc Natl Acad Sci U S A 104:5800–5805
- Tal DM, Capasso JM, Munson K, Karlish SJ (2001) Biochemistry 40:12505–12514
- Toyoshima C, Mizutani T (2004) Nature 430:529-535
- Toyoshima C, Nomura H (2002) Nature 418:605-611
- Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Nature 405: 647–655
- Toyoshima C, Nomura H, Tsuda T (2004) Nature 432:361-368
- Vilsen B (1995a) Biochemistry 34:1455-1463
- Vilsen B (1995b) Acta Physiol Scand Suppl 624:1-146
- Vilsen B, Andersen, JP (1992a) J Biol Chem 267:3539-3550
- Vilsen B, Andersen JP (1992b) J Biol Chem 267:25739-25743
- Vilsen B, Andersen JP (1998) Biochemistry 37:10961-10971
- Vilsen B, Andersen JP, Petersen J, Jorgensen PL (1987) J Biol Chem 262:10511-10517